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Auditory Perception

• Conventional Spectral analysis decomposes the signal into 
a number of linearly spaced frequencies

• The resolution (differences between adjacent frequencies) is the 
same at all frequencies

• The human ear, on the other hand, has non-uniform 
resolution

• At low frequencies we can detect small changes in frequency

• At high frequencies, only gross differences can be detected

• Feature computation must be performed with similar 
resolution

• Since the information in the speech signal is also distributed in a 
manner matched to human perception



Matching Human Auditory Response

• Modify the spectrum to model the frequency 
resolution of the human ear

• Warp the frequency axis such that small 
differences between frequencies at lower 
frequencies are given the same importance as 
larger differences at higher frequencies



Linear frequency axis: equal increments of 

frequency at equal intervals

Warping the frequency axis



Filter Bank

• Each hair cell in the human ear actually responds 
to a band of frequencies, with a peak response at 
a particular frequency

• To mimic this, we apply a bank of “auditory” filters
• Filters are triangular

• An approximation: hair cell response is not triangular

• A small number of filters (40)
• Far fewer than hair cells (~3000)



The process of parametrization

For each filter:

Each power spectral 

value is weighted by 

the value of the filter 

at that frequency. 
This picture shows a bank or 

collection of triangular filters 

that overlap by 50%



For each filter:

All weighted spectral 

values are integrated 

(added), giving one 

value for the filter

The process of parametrization



Logarithm

All weighted spectral 

values for each filter 

are integrated 

(added), giving one 

value per filter

The process of parametrization



Additional Processing

• The Mel spectrum represents energies in 
frequency bands

• Highly unequal in different bands
• Energy and variations in energy are both much greater at 

lower frequencies

• May dominate any pattern classification or template matching 
scores

• High-dimensional representation: many filters

• Compress the energy values to reduce imbalance

• Reduce dimensions for computational tractability
• Also, for generalization: reduced dimensional 

representations have lower variations across speakers 
for any sound



Logarithm

All weighted spectral 

values for each filter 

are integrated 

(added), giving one 

value per filter
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The process of parametrization

Another transform 

(DCT/inverse DCT)

Dim1 Dim2 Dim3 Dim4 Dim5 Dim6 Dim7  Dim8 Dim9

Logarithm

Log Mel spectrum

All weighted spectral 

values for each filter 

are integrated 

(added), giving one 

value per filter



The process of parametrization

Another transform 

(DCT/inverse DCT)

Dim 1

Dim 2

Dim 3

Dim 4

Dim 5

Dim 6

…

Giving one n-dimensional 

vector for the frame

Logarithm

Log Mel spectrum

Mel Cepstrum

All weighted spectral 

values for each filter 

are integrated 

(added), giving one 

value per filter



Signal Reperesentation

An example segment

400 sample segment (25 ms)

from 16khz signal preemphasized windowed

Power spectrum 40 point Mel spectrum Log Mel spectrum

Mel cepstrum



The entire speech signal is thus converted into a sequence of 

vectors. These are cepstral vectors.

There are other ways of converting the speech signal into a 

sequence of vectors

The process of feature extraction



Effect of Speaker Variations, Microphone 
Variations, Noise etc.

• Noise, channel and speaker variations change the 
distribution of cepstral values

• To compensate for these, we would like to undo these 
changes to the distribution

• Unfortunately, the precise nature of the distributions both 
before and after the “corrution” is hard to know



Ideal Correction for Variations

• Noise, channel and speaker variations change the 
distribution of cepstral values

• To compensate for these, we would like to undo these 
changes to the distribution

• tely, the precise nature of the distributions both before and 
after the “corruption” is hard to know



Effect of Noise Etc.

• Noise, channel and speaker variations change the 
distribution of cepstral values

• To compensate for these, we would like to undo these 
changes to the distribution

• Unfortunately, the precise position of the distributions of 
the “good” speech is hard to know
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Solution: Move all distributions to a “standard” location

• “Move” all utterances to have a mean of 0

• This ensures that all the data is centered at 0
• Thereby eliminating some of the mismatch
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16  March 2009 Signal Reperesentation

Cepstra Mean Normalization

• For each utterance encountered (both in “training” 
and in “testing”)

• Compute the mean of all cepstral vectors

• Subtract the mean out of all cepstral vectors
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Variance

• The variance of the distributions is also modified 
by the corrupting factors

• This can also be accounted for by variance 
normalization

These “spreads” are different



Variance Normalization

• Compute the standard deviation of the mean-
normalized cepstra

• Divide all mean-normalized cepstra by this 
standard deviation

• The resultant cepstra for any recording have 0 
mean and a variance of 1.
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Temporal Variations

• The cepstral vectors capture instant information 
only

• Or, more precisely, current spectral structure within the 
analysis window

• Phoneme identity resides not just in the snapshot 
information, but also in the temporal structure

• Manner in which these values change with time

• Most characteristic features
• Velocity: rate of change of value with time

• Acceleration: rate with which the velocity changes

• These must also be represented in the feature



Velocity Features

• For every component in the cepstrum for any 
frame

• compute the difference between the corresponding 
feature value for the next frame and the value for the 
previous frame

• For 13 cepstral values, we obtain 13 “delta” values

• The set of all delta values gives us a “delta feature”



C(t)

Dc(t)=c(t+t)-c(t-t)

The process of feature extraction



Representing Acceleration

• The acceleration represents the manner in which the 
velocity changes

• Represented as the derivative of velocity

• The DOUBLE-delta or Acceleration Feature captures this

• For every component in the cepstrum for any frame
• compute the difference between the corresponding delta feature 

value for the next frame and the delta value for the previous frame

• For 13 cepstral values, we obtain 13 “double-delta” values

• The set of all double-delta values gives us an “acceleration 
feature”



C(t)

Dc(t)=c(t+t)-c(t-t)

DDc(t)=Dc(t+t)-Dc(t-t)

The process of feature extraction



Feature extraction

DDc(t)

Dc(t)

c(t)



Normalization

• Vocal tracts of different people are different in length

• A longer vocal tract has lower resonant frequencies

• The overall spectral structure changes with the length of the vocal 
tract



Effect of vocal tract length

• A spectrum for a sound produced by a person with 

a short vocal tract length

• The same sound produced by someone with a 

longer vocal tract



Accounting for Vocal Tract Length Variation

• Recognition performance can be improved if the variation in 
spectrum due to differences in vocal tract length are reduced

• Reduces variance of each sound class

• Way to reduce spectral variation:
• Linearly “warp” the spectrum of every speaker to a canonical speaker

• The canonical speaker may be any speaker in the data

• The canonical speaker may even be a “virtual” speaker



Frequency-warped Feature Comptuation

400 sample segment (25 ms)

from 16khz signal preemphasized windowed

Power spectrum VTLN warping

Log Mel spectrum

Mel cepstrum

40 point Mel spectrum



Spectral-Characteristic-based Estimation
• Formants are distinctive spectral characteristics

• Trajectories of peaks in the envelope

• These trajectories are similar for different instances of 
the phoneme

• But vary in a absolute frequency due to vocal tract 
length variations
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Formants

• Formants are visually identifiable characteristics of speech spectra

• Formants typically identified as F1, F2, etc. for the first formant, 
second formant, etc.

• F0 typically refers to the fundamental frequency – pitch

• The characteristics of phonemes are largely encoded in formant 
positions



Length Normalization 

• To warp a speaker’s frequency axis to the canonical speaker, it is 
sufficient to match formant frequencies for the two

• i.e. warp the frequency so that F1(speaker) = F1(canonical), F2(speaker) = 
F2(canonical) etc. on average

• i.e. compute a such that aF1(speaker) = F1(canonical) (and so on) on 
average



Spectrum-based Vocal Tract Length Normalization
• Compute average F1, F2, F3 for the speaker’s speech

• Run a formant tracker on the speech
• Returns formants F1, F2, F3.. for each analysis frame

• Average F1 values for all frames
• Similarly compute average F2 and F3.

• Three formants are sufficient

• Minimize the error: 

(aF1 – F1canonical)
2 + (aF2 – F2canonical)

2 + (aF3 – F3canonical)
2

• The variables in the above equation are all average formant values

• This computes a regression between the average formant values for 
the canonical speaker and those for the test speaker



Spectrum-Based Warping Function

• A is the slope of the regression between (F1, 
F1canonical), (F2, F2canonical) and (F3, F3canonical)

0 1 2 3 4 5 6 7

7

6

5

4

3

2

1

Canonical speaker (kHz)

T
es

t 
 s

p
ea

k
er

 (
k

H
z)

(F1, F1canonical)

(F2, F2canonical)

(F3, F3canonical)



But WHO is this canonical speaker?

• Simply an average speaker
• Compute average F1 for all utterances of all speakers

• Compute average F2 for all utterances of all speakers

• Compute average F3 for all utterances of all speakers



Overall procedure

• Training:
• Compute average formant values for all speakers

• Compute speaker specific frequency warps for each speaker

• Frequency warp all spectra for the speaker

• Testing:
• Compute average formant values for the test utterance (or speaker)

• Compute utterance (or speaker) specific frequency warps

• Frequency warp all spectra prior to additional processing



Other Processing: Dealing with Noise

• The incoming speech signal is often corrupted by noise

• Noise may be reduced through spectral subtraction

• Theory: 
• Noise is uncorrelated to speech

• The power spectrum of noise adds to that of speech, to result in the power 
spectrum of noisy speech

• If the power spectrum of noise were known, it could simply be subtracted out 
from the power spectrum of noisy speech

• To obtain clean speech


